156,970 research outputs found

    A Program-Level Approach to Revising Logic Programs under the Answer Set Semantics

    Full text link
    An approach to the revision of logic programs under the answer set semantics is presented. For programs P and Q, the goal is to determine the answer sets that correspond to the revision of P by Q, denoted P * Q. A fundamental principle of classical (AGM) revision, and the one that guides the approach here, is the success postulate. In AGM revision, this stipulates that A is in K * A. By analogy with the success postulate, for programs P and Q, this means that the answer sets of Q will in some sense be contained in those of P * Q. The essential idea is that for P * Q, a three-valued answer set for Q, consisting of positive and negative literals, is first determined. The positive literals constitute a regular answer set, while the negated literals make up a minimal set of naf literals required to produce the answer set from Q. These literals are propagated to the program P, along with those rules of Q that are not decided by these literals. The approach differs from work in update logic programs in two main respects. First, we ensure that the revising logic program has higher priority, and so we satisfy the success postulate; second, for the preference implicit in a revision P * Q, the program Q as a whole takes precedence over P, unlike update logic programs, since answer sets of Q are propagated to P. We show that a core group of the AGM postulates are satisfied, as are the postulates that have been proposed for update logic programs

    Information spreading during emergencies and anomalous events

    Full text link
    The most critical time for information to spread is in the aftermath of a serious emergency, crisis, or disaster. Individuals affected by such situations can now turn to an array of communication channels, from mobile phone calls and text messages to social media posts, when alerting social ties. These channels drastically improve the speed of information in a time-sensitive event, and provide extant records of human dynamics during and afterward the event. Retrospective analysis of such anomalous events provides researchers with a class of "found experiments" that may be used to better understand social spreading. In this chapter, we study information spreading due to a number of emergency events, including the Boston Marathon Bombing and a plane crash at a western European airport. We also contrast the different information which may be gleaned by social media data compared with mobile phone data and we estimate the rate of anomalous events in a mobile phone dataset using a proposed anomaly detection method.Comment: 19 pages, 11 figure

    An Ignatian Heritage

    Get PDF

    Swift\u27s Attack On Pedantry

    Get PDF
    It may seem to the modern reader that Jonathan Swift fell short in his attempt to ridicule pedantry, for Swift\u27s most sarcastic illustrations of the follies of learned men might well find their parallel as commonplace news items in the magazines or newspapers of today. Swift must have felt that he was exaggerating to absurdity the follies of the learned of his time in the fields of science and the arts; and in order to accord him the proper credit, we must look at his works in the light of historical perspective

    Motion in random fields - an application to stock market data

    Full text link
    A new model for stock price fluctuations is proposed, based upon an analogy with the motion of tracers in Gaussian random fields, as used in turbulent dispersion models and in studies of transport in dynamically disordered media. Analytical and numerical results for this model in a special limiting case of a single-scale field show characteristics similar to those found in empirical studies of stock market data. Specifically, short-term returns have a non-Gaussian distribution, with super-diffusive volatility, and a fast-decaying correlation function. The correlation function of the absolute value of returns decays as a power-law, and the returns distribution converges towards Gaussian over long times. Some important characteristics of empirical data are not, however, reproduced by the model, notably the scaling of tails of the cumulative distribution function of returns.Comment: 28 pages, 10 figure
    • …
    corecore